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Abstract
We have determined experimentally the parameters characterizing the structures
formed in a magnetic colloidal suspension subjected to a unidirectional
magnetic field and a rotating field for different cell thicknesses. In this latter
case one observes the formation of a periodic structure in parallel sheets situated
in the plane of rotation of the field. A theoretical model based on minimization
of the energy allows one to find quantitatively the observations obtained in a
unidirectional field. On the other hand, in a rotating field, the agreement is
quantitative only if we take the surface energy as an adjustable parameter. We
explain this fact on the basis of the existence of a substructure made of discs
of particles. In a second part we show the influence of the structures on the
rheological properties of the suspension by measuring the shear moduli for
different kinds of structure. We find that for the same magnetic field, the shear
moduli depend strongly on the structure and can be quite well predicted by a
mean field theory; also the critical shear strain is determined and is in agreement
with the model. Finally we show that, in a regime with a unidirectional
oscillating field without shear flow, a new phenomenon appears if the confining
walls are not parallel. In this case we observe the formation of anisotropic
aggregates which undergo a collective chaotic rotation around the axis of the
aggregates.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetorheological (MR) suspensions are composed of magnetic particles whose size, in the
micron range, is at least two orders of magnitude larger than in the better known magnetic
suspensions called ferrofluids. The induced magnetostatic force between two particles scales
as the square of the size of the particles and so, in the presence of an external magnetic field,
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particles of micron size easily aggregate to form a gel-like structure whereas a ferrofluid
remains liquid because the thermodynamic force (scaling as kT/a) is always dominant.
Strong MR suspensions are made of iron particles with diameters of a few micrometres. The
aggregation process for these particles is always an out-of-equilibrium process also subjected
to sedimentation. In contrast, particles of diameter between 0.5 and 1 µm, made of polystyrene
with magnetic inclusions of ferrous oxide, can show a phase separation with a well characterized
size of the domains [1].

Such a phase separation with domain formation (usually labyrinthine structure) is well
known in ferrofluids where it is possible to successfully predict the change of period of the
pattern with the amplitude of the external magnetic field, if the effective surface tension at the
boundary between the two phases is known [2, 3].

More recently, well defined structures formed of cylindrical aggregates aligned in the
magnetic field and arranged in a hexagonal pattern have been observed in MR suspensions [4–
6]. When subjected to an oscillating shear flow, these cylindrical structures transform into a
striped pattern aligned in the direction of the velocity and showing a well defined period [7].
Another way to obtain a striped pattern is to apply a rotating magnetic field to the suspension
because of the existence of an average attractive dipolar interaction in the plane of the rotating
field [8–10].

In section 2, we first recall briefly the theory which can be used to predict the equilibrium
structures resulting from a phase separation either in a constant field or in a rotating field and
also in the presence of a shear flow. We shall discuss in section 3 the success and the limitation
of this model on the basis of experimental results. The presence of anisotropic structures
gives a lamellar composite which should present a marked anisotropy of the shear moduli. We
have tested this anisotropy with a home-made plate–plate rheometer. In section 4 we present
new experimental results concerning the dependence of the shear modulus on the structure
and we compare with the predictions obtained from a mean field theory. Finally, we present
experimental data on a new phenomenon obtained in the presence of a sinusoidal unidirectional
magnetic field applied perpendicularly to a cell whose plates are not parallel to each other. We
shall see that the aggregates are no longer symmetric and that they can rotate in a chaotic way
around the direction of the field.

2. The model

We have to calculate the magnetic energy as a function of the structure parameters
characterizing the domains. In the case of a unidirectional field the domains usually have
a symmetry of revolution around the field and, for the sake of simplicity, we consider that they
have an ellipsoidal shape and that they are located on a hexagonal array. For the case of a
rotating field—or for a constant field and a shear flow—we observe a striped structure and we
characterize the domains by layers of particles which are equally spaced from each other. The
minimum distance, d , between the domains and their size (or their internal volume fraction:
�a) are the two parameters that we are looking for. We suppose that between the domains there
are no particles (the osmotic pressure of the colloidal particles is zero). The two parameters
are then obtained through a minimization of the magnetic energy, Um , and an equilibrium of
the magnetic pressure, Pm , and of the osmotic pressure, Posm inside the domains:

∂

∂d
(Um/V )ϕ = 0 and Pm + Posm = 0.
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2.1. Magnetic energy of a hexagonal array of ellipsoids

Let us consider a two-dimensional hexagonal array of Na ellipsoidal aggregates of semi-axis
b and length h = 2l and separated by a distance d . The following notation is used: Ma is the
magnetic moment of one aggregate and Va its volume. The quantity ϕ = Na Va/V is the part
of the volume which is occupied by the aggregates. It must not be confused with the internal
volume fraction inside the aggregate �a = �0/ϕ where �0 is the average volume fraction
of particles in the suspension. The magnetic moment Ma of an ellipsoidal aggregate is given
by [6]

Ma = µa − 1

4π

[
H0 − ∑

j T r
i j Ma

1 + nz(µa − 1)

]
Va = αa

(
H0 −

∑
j

T r
i j Ma

)
(1)

where µa = f (�a) is the permeability of the aggregate obtained by using the equation of
Maxwell-Garnett; nz is the demagnetization factor of an ellipsoid:

nz = (1 − e2)

2e3

(
ln

(
1 + e

1 − e

)
− 2e

)
with e the eccentricity: e = (1 − b2/ l2)1/2.

T r
i j = (1/h2)[2/di j − 2/(d2

i j + h2)1/2] is the propagator of the field due to aggregate j on the
aggregate i whose axes are separated by the distance di j [4]. The total magnetic energy per
unit volume is then

Um

V
= −1

2V
Na �Ma · �H0 = −ϕH 2

0

8π

[
(µa − 1)

1 + nz(µa − 1)

][
1

1 + nr

]
(2)

with

nr =
∑

j

T r
i j =

[
(µa − 1)

1 + nz(µa − 1)

]
[ϕ]

[√(
1 +

d2

h2

)
− d

h

]
and d = b

√
2

3ϕ
.

Finally, we have also to take into account the surface tension of the aggregate, σ ,
coming from the change of local field on the particles belonging to the surface Sa of an
aggregate. Indeed, the magnetic field is weaker on the surface than inside the aggregate and
the corresponding energy is [7]

US

V
= Naσ Sa

V
with σ = M2

a a

3µ0V 2
a

. (3)

This term must be added to the right-hand side of equation (2). In the following derivation we
shall show how it can be included in the magnetic energy from the beginning.

2.2. Magnetic energy of a layered structure

The average interaction in the plane of rotation of the field is attractive and induces the formation
of a layered pattern. We call the thickness of the layer e and its height h. We suppose that the
width L is very large compared to the other dimensions, so we consider a two-dimensional
situation. Let us write �H n

0 for the component of the field normal to the plane of the cell and
�H t

0 for the tangential component: �H0 = �H n
0 + �H t

0. These two components are sinusoidal
with a phase difference of π/2. The particles that we use are superparamagnetic and the
magnetization does not show any hysteresis at the frequencies used (ν < 50 Hz), so we can
treat each component independently. Due to this simple geometry we can reason at the level of
one particle and write for the normal magnetic moment of a layer Mn

a = NV mn
V + NS mn

S with
Nvmn

V and Ns mn
S respectively the number of particles and the magnetic moment of a given
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particle in the volume of the aggregate and on its surface. The magnetic energy Ulayer of a
layer of paramagnetic particles in a rotating field is then

Ulayer = − 1
4 [Mn

a H n
0 + Mt

a H t
0]. (4)

The magnetic moment of a particle inside the aggregate will be the product of its polarizability,
α, and the local field, Hloc:

mn
V = αHloc = α

(
H n

0 − 4πnd
Mn

a

Va
+

4π

3

Mn
a

Va

)
with α = a3 (µp − 1)

(µp + 2)
= βa3. (5)

The second term in the right-hand side of (5) is the demagnetization field and the third
one is the Lorentz field inside the layer. For a particle on the surface, we divide the Lorentz
field by two, so we have

mn
S = mn

V − 2π

3
α

Mn
a

Va
. (6)

Using equations (5), (6), we obtain the normal component of the magnetic moment of a layer
per unit volume:

Mn = Mn
a

Va
= 3β�a/4π

1 − β�a(1 − 3nd − 2a/e)
H n

0 . (7)

For the tangential component of the magnetic field, the method will be the same but with a
significant simplification, since in this case the demagnetizing factor is zero. We thus have the
result given by equation (7) but with nd = 0 and H t

0 instead of H n
0 . Using equations (4)–(7),

we can calculate the total energy per unit of volume. In our case, H t
0 = H n

0 (rotating field)
and we obtain

Um

V
= 3β H n2

0 �0 A

16π
with A = 1

1 − β�a(1 − 3nd − 2a/e)
+

1

1 − β�a(1 − 2a/e)
. (8)

The value of the demagnetizing factor nd for a layered pattern with a period d was already
calculated by Cebers [11]:

nd(ϕ, d) = ϕ +
d

π3ϕ

+∞∑
k=1

sin2(πkϕϕ)

k3

(
1 − exp

−2πk

d∗

)
with d∗ = d

h
. (9)

Note that in equation (8) the surface energy does not appear explicitly, but through the term
a/e.

2.3. Balance of pressures

Assuming that the total pressure (magnetic pressure plus osmotic pressure) inside the
aggregates is close to zero for well formed domains, we get an other equation allowing us
to determine the second unknown which is the internal fraction, �a , inside the aggregates.
The magnetic and osmotic pressures are respectively

Pm = ∂

∂V
(Um)

∣∣∣∣
d

and Posm = kT

vp
× 1.85 × �a

0.64�a
(10)

(vp is the volume of the particle). The last expression for the osmotic pressure comes from
molecular dynamics or Monte Carlo simulations of hard spheres [12]. This is clearly an
approximation since the structure inside the domains is anisotropic due to the presence of the
magnetic field and numerical simulations should help us to find a better approximation.

Another point which is worth stressing is the contribution of a shear flow to the osmotic
pressure. A shear flow with the velocity and the velocity gradients defining the plane of the
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layered structure will increase the diffusivity of the particles in the direction perpendicular to
the layers, which can be expressed by a shear-induced osmotic pressure. A simple hypothesis
is to consider that this pressure is proportional to the fluctuations of velocity which scale as
the square of the shear rate and that it will diverge close to the maximum packing fraction of
0.64 in order to be coherent with equation (10). Such an implementation was shown to be
quite successful in reproducing the experimental results for the period of a layered structure
obtained in the presence of a shear flow and of a constant magnetic field [7].

3. Experimental determination of the field-induced structures

The suspension is placed between two glass plates making a small angle with each other in
order to produce a variable thickness from one extremity of the cell to the other. This cell
is sealed and can be filled with a syringe. It is placed at the centre of Helmholtz coils and
we observe the structure with the help of a microscope equipped with a video camera. The
magnetic field is driven by a computer which also records the pictures of the structure. The
suspension that we have used is made of polystyrene particles containing 63% by weight of
magnetite. These particles, designed by Merck, suspended in water are spherical but slightly
polydisperse, with an average diameter of 0.78 µm for all experiments presented in this paper.
They behave as a superparamagnetic material and their initial permeability was obtained from
a measurement of the flux variation in a coil containing the suspension in the presence of a
sinusoidal current. We find µp = 2.69 for both samples. The corresponding magnetic moment
of the particle placed in the external field H0 is

m p = 4πa3µ0β H0 with β = (µp − 1)/(µp + 2).

The main quantity which will control the phase separation in the absence of shear is the ratio
of the magnetic dipolar energy to the thermal energy:

λ = 2m2
p

4πµ0(2a)3kT
= πµ0β

2a3 H 2
0

kT

which gives for a = 0.39 µm, β = 0.36 and room temperature: λ = 6.83 × 10−6 H 2
0 with

H0 in A m−1 or, since B0 = µ0 H0, λ = 8.66 × 106 B2
0 with B0 in teslas. We see that even

for fields as low as 3.4 × 10−4 T (or 3.4 G) the magnetic force already dominates the thermal
forces.

3.1. Experimental results

The cell is placed at the centre of two pairs of Helmholtz coils which are located in such a way
that the plane of rotation of the field is perpendicular to the plane of the cell. The two coils
are supplied with two voltages presenting a phase difference of π/2. A schematic view of the
geometry of the rotating field with respect to the cell is represented in figure 1(a).

This device can also be used to study the structure in the case of a unidirectional field
(here along Ox) by supplying only one pair of coils with a DC. The results obtained with
a unidirectional field for different cell heights have been reported elsewhere [10]. We have
found that for an initial volume fraction �0 = 0.045 we can fit the experimental data very
well with a power law: d = 0.8h0.5, with d the average distance between aggregates and h
the thickness of the cell which was between 40 and 1000 µm. The value of the field was
H = 76 Oe (corresponding to λ = 268). The theoretical model predicts d = 0.95h0.49 for
this given range of thickness. Since there are no adjustable parameters, this prediction is in
fair agreement with the experiment. It should also be understood that these power laws are
only a convenient way to reproduce the results for a limited range of thicknesses: there is no
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(a) (b)

Figure 1. The geometry of the experiment. (a) The suspension is placed between the two plates;
the broken line is the axis (Ox) of observation. (b) The top view of the cell. The field is rotating
in the plane Oxz as indicated by the arrows in (a).

simple analytic law for the variation of the distance between the aggregates versus the sample
thickness.

Let us now discuss in some more detail what happens in a rotating magnetic field. The
image that we can see in this case is reproduced in figure 1(b). We have a phase separation
with the formation of thin layers of particles. The thickness of one layer is a few micrometres,
which represents a few particle diameters.

When the frequency of rotation of the field is high enough that a pair of particles do not
move appreciably during one period, then we have an average attractive interaction which is
responsible for the formation of discs of particles in the plane of rotation of the field. In fact, the
average energy of two dipoles rotating in phase with the field is U = (−m2/2r3)(1−3 cos2 θ),
where θ is the angle between the normal to the plane of the rotating field and the vector �r joining
the two dipoles. This interaction is attractive for θ = π/2 (dipoles in the plane of rotation)
and repulsive for θ = 0; so it induces a layered pattern with the normal to the layers parallel
to the axis of rotation of the magnetic field [8].

Due to the symmetry of the rotating field, we expect the particles to first gather in disc-
shaped aggregates, which will join each other at higher field to form a layered structure. It is
then tempting to use a cylindrical cell—that is to say, a capillary—in order to see how the shape
of the container can influence the period of the structure. The model described in section 2
must be slightly modified: firstly we have only to consider the normal field component and
secondly the demagnetization factor, nd , in equation (9) will be different.

The calculation shows that the period of the layered structure in a capillary of diameter 2h
should be the same as that of a thin cell of thickness h. The geometry is shown in figure 2(a)
and the experimental period, in both situations, is plotted in figure 2(b) versus the frequency
of the rotating field for two different fields: 15 and 20 G. We see that the difference in period
between the two geometries is indeed quite small and practically within the uncertainty bars.
Furthermore, it appears that in this frequency domain the period of the layered structure is
independent of the rotation frequency, as we could expect for high enough frequencies. We
also observe in figure 2(b) that between 15 and 20 G the period has decreased from 10 to 8 µm.
For higher fields the period will no longer change. In fact, the structure begins to appear for
9 G with a period of about 11 µm. The decrease of period with the increase of the field could
probably be predicted if we were able to introduce in the model a structure with two different
volume fractions �1 and �2 instead of �a and 0. The comparison with the model has been
realized in the high-field domain, where it applies, and the results are plotted in figure 3.
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Figure 2. (a) Domains in a rotating field with two different geometries (flat cell and capillary);
the plane of rotation of the field is perpendicular to the axis of the capillary. (b) Average distance
between layers versus frequency of the rotating field. The solid symbols correspond to the flat cell
and the open ones to the capillary. Upper curves: H = 20 G; lower ones: H = 15 G.

Experiment

Figure 3. The change of average inter-aggregate distance normalized by the height of the cell h,
versus the thickness of the cell, h, normalized by the radius of the particles a.

The agreement is quite good but we have to note that we took the surface tension as a
parameter. The surface tension comes from the change of the Lorentz field on the boundary
of the domain whose thickness is proportional to the radius of a particle (the term a/e of
equation (8)). In order to obtain a good fit we were obliged to decrease the surface tension
by almost two orders of magnitude. An explanation of this discrepancy could be that, in
practice, the layers observed in a rotating magnetic field are not homogeneous but present
a substructure made of disc-shaped aggregates having a thickness of one particle and also a
radius probably smaller than the thickness of the cell. Some support for this explanation comes
from the observation of the structure when the field is rotating in the plane of the cell. We
see in figure 4 that the structure is not homogeneous at all and presents many holes. Also,
numerical simulations show that the stripes of particles are composed of several monolayers
of particles [13].



S1444 P Carletto and G Bossis

Figure 4. A top view of the plane of particles. The field, of amplitude 20 Oe, is rotating in the
plane of the figure. The thickness of the suspension is h = 50 µm.

4. Anisotropy in the elastic shear modulus of the layered structures

The application of a rotating field to a magnetic suspension allows one to create a mesoscopic
structure made of parallel layers spaced by an average distance d . Such sheets of particles also
form in steady shear flow in the presence of a constant field, where they are aligned in the plane
formed by the velocity and the field. The presence of these structures has a large influence
on the rheology of the magnetic suspension, but if they are formed by the flow the interplay
between the structure and the rheology is quite complex. Here we have the opportunity to
form such layers in the absence of a flow and then to measure their rheological properties by
applying a small shear rate in order to keep them intact. We have done this experiment using
a home-made plate–plate rheometer. The suspension is placed between two glass discs; the
upper one is fixed on the arm of an electromagnetic vibrator and the lower one on a vertical
stage with submicron resolution of the displacement. The adjustment of the parallelism is
carried out by looking at the Fabry–Perot fringes produced by the reflections of a laser beam
between the two plates. The horizontality of the cell is also adjusted with the help of the
reflections of the laser beam by the glass discs. The error in the parallelism is less than 1 µm
over the whole surface and the error in the average thickness of the cell is less than 2 µm.

After the liquid has been introduced with a syringe, the lower plate is raised to a fixed
distance from the upper one (<500 µm because the liquid is held by capillary forces). The
horizontal displacement of the upper plate is measured with an optical detector which detects
the change of the light reflected by a small mirror mounted on the upper plate. The magnetic
field is driven by a computer which also records the upper plate displacement and the voltage
applied to the electromagnet transducer; this voltage is proportional to the shear force applied
to the suspension. The ratio of the amplitude of the force to the amplitude of the displacement,
together with the phase difference, allows us to measure the viscoelastic properties of the
suspension, namely G ′(ω) and G ′′(ω). In practice, the dissipation of the membrane holding
the vibrating rod is too large, compared to the viscous friction of the liquid, and only G ′(ω)

can be determined with a good sensitivity. We were also able to check the displacement signal
with an oscilloscope. In fact, when the signal is no longer sinusoidal, we have seen with a
microscope that it corresponds to the point where the aggregates begin to break. We shall
come back to this point later.

We first measured the value of G ′ versus frequency for the columnar structure obtained
in a unidirectional field. We find G ′ = 17, 27.5 and 36 Pa for respectively H = 190, 230
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planes perpendicular

planes parallel k

Figure 5. Left: variation of the elastic modulus versus the frequency of rotation of the field. Upper
curve: layers perpendicular to the strain; lower curve: parallel to the strain. The amplitude of the
field is 20 Oe, the frequency of rotation is 18 Hz and γ = 0.1.

and 270 Oe. The dependence on frequency in our range of measurement (25–36 Hz) was not
significant. The measurements were made for a small strain: γ = 0.1, which does not modify
the columnar structure. Increasing the strain until γ = 0.3, the structure changed to form a
layered structure in the plane of the velocity and field. Now, coming back to γ = 0.1, we no
longer measure the same shear modulus but a higher one: G ′ = 26.5, 38 and 59 Pa for the same
fields. This means that the stripe structure is more difficult to strain in the presence of a field
that the individual columns. Now we can also build a layered structure perpendicular to the
lines of flow by using the mean rotating field. Due to the coils used to produce the rotating field,
its value is much lower than for a constant one; so we have to compare the value of G ′ for two
layered geometries obtained with the same rotating field (cf the left-hand part of figure 5). The
result is that the shear modulus of the layers strained in their own plane (G ′ = 6 Pa) is slightly
higher than if they are strained in a perpendicular direction (G ′ = 5.6 Pa). In both cases the
amplitude of the rotating field was H = 16 Oe. On the right in figure 5 we have plotted the
critical strain corresponding to the rupture of the aggregates. For the perpendicular situation
the critical strain, γc = 0.53 ∓ 0.07, is much lower than for the parallel case: γc = 2.3 ∓ 0.27.

It is possible to compare these results with some theoretical predictions based on a mean
field theory: the aggregates (either planes or cylinders) are considered as a continuous medium
of volume fraction �a. The change of energy of these aggregates, when they are strained in a
constant magnetic field, can be calculated by considering the change of magnetic energy, W ,
of a composite medium [14, 15]. The shear stress will be given by the derivative of the energy
relative to the strain:

τ = Fy

S
= − 1

S

∂W

∂y
= − 1

V

∂W

∂γ
= 1

2V
H0

∂mz

∂γ
with W = −1

2
�m · �H0 and γ = y

h

where mz is the component of the magnetic moment of the sample in the direction of the
magnetic field.

Following these lines, we obtain for the shear stress the following expression [15]:

τ

µ f H 2
= −1

2
(µ∗

a)
2 2γ

(1 + γ 2)2

ϕ(1 − ϕ)

Cs + µ∗
a(1 − ϕ)

with ϕ = �0

�a
and µ∗

a = µa

µ f
− 1. (11)

Cs = 1 for a planar aggregate and Cs = 2 for cylinders. The quantity µ f is the permeability
of the suspending fluid.



S1446 P Carletto and G Bossis

Figure 6. A top view of the aggregates. The sinusoidal field is perpendicular to the plane of the
figure. The frequency and the amplitude of the field are 15 Hz and 60 Oe. The local height is
800 µm and the angle is 1.48◦.

The slope for small values of γ is the shear modulus. In order to evaluate G ′ we need
to know the volume fraction �a inside the aggregates. We could use the equations given in
section 2, but we know that when λ � 1 we are close to a compact volume fraction that we can
take equal to 0.64. This is the case for H = 200 Oe (but not in the case of the rotating field with
H = 16 Oe which is close to the critical field of 8 Oe). The volume fraction in this experiment
was �0 = 0.1. The permeability of the particles was µp = 2.69. From the measurement of
the magnetization and the application of the Maxwell-Garnett formula we obtain µ∗

a = 0.88.
The value of the shear modulus from equation (11) is then G ′ = 15.4 Pa for H = 230 Oe
rather than 27.5 for the experimental value. For stripes perpendicular to the strain direction,
equation (11) predicts G ′ = 24.3 Pa, which we can compare with the experimental result:
G ′ = 38 Pa, but with stripes parallel to the strain. This is an upper bound, since we have seen
that the perpendicular case gives a lower modulus. In any event it appears that equation (11)
gives the right order of magnitude and a good trend when we change from cylinders to stripes.

Another piece of information that can be obtained from equation (11) is the critical
shear rate where we expect the aggregates to break. In fact, this will happen for the strain
corresponding to the maximum of the stress–strain curve. This maximum is found to be
γc = 1√

3
= 0.57. This theoretical value is in good agreement with the experimental value of

0.53.
When the layers are strained in their own plane, the model does not apply, but we can

clearly expect a significant effect of breaking and recombination of the chains inside the layers
well before the critical strain of 2.23.

5. Structures in a unidirectional sinusoidal field and with non-parallel walls

We were using a cell with non-parallel walls in order to facilitate the measurements of the
structures for different heights of the cell. We were quite surprised to see that, when subjected
to a sinusoidal field perpendicular to the lower wall of the cell, the aggregates first lose their
cylindrical symmetry and secondly begin to rotate around the axis of the field in a chaotic way.
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Figure 7. A top view of the aggregates. They make an angle of 45◦ with the direction of the
gradient of the height. The conditions are the same as for figure 7 except the frequency, which is
35 Hz.
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Figure 8. Change of the field amplitude threshold for which the instability appears versus angle
of inclination of the cell and frequency of the field.

For instance, we can see in figure 6 that the aggregates still have a cylindrical symmetry for
a frequency of 15 Hz but that this is no longer the case for a frequency of 35 Hz. In this last
case the orientation of the aggregates oscillates in a chaotic way among three directions, one
along the gradient of height of the cell, another at about 45◦ as shown in figure 7 and the third
one at 135◦.

It appears that increasing the angle between the two walls increases the threshold frequency
above which the phenomenon happens but reduces the threshold amplitude of the field, as can
be seen in figure 8. It is also important to note that this chaotic motion does not take place
throughout the whole cell but in a reduced part of it. When the amplitude of the field is
increased, the location of the instability drifts towards larger heights, as can be seen in figure 9.
Another interesting feature of this instability is that all the aggregates have the same chaotic
motion in the part of the cell where this motion takes place.
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Figure 9. Location in the cell of the instability versus amplitude of the field. The angle of the cell
is 1.48◦ and the frequency of the field is 35 Hz.

We can try to interpret this motion by saying that due to the angle, and to the magnetization
of the aggregates, there is a tangential component of the field. This component can explain
the loss of the cylindrical symmetry. Furthermore, we need a relaxation process in order to
be able to generate a torque on the aggregate. This relaxation process can come from the
Brownian motion of the particles inside the aggregate or, perhaps, from the relaxation time of
the magnetization inside the particles. The use of particles of different sizes should help us to
understand the origin of this relaxation time. Also, experiments with a larger cell would allow
us to make more precise measurements of the location of the instability and the effect of the
boundaries of the cell.

6. Conclusions

In this paper, we have shown that magnetic suspensions made of colloidal particles of size
slightly smaller than 1 µm constitute a good material with which to test the theories of phase
separation and domain formation in the presence of a magnetic field. Such a size allows a
direct observation of the structures with a microscope and the magnetic forces between particles
are large enough to give significant rheological effects; yet still the Brownian motion is high
enough for avoiding out-of-equilibrium aggregation. The shape of the domains depends on
the geometry of the cell. A model of minimization of the free energy well reproduces this
dependence but should include, for a more exact theory, the state of the internal structure
inside the domains. We have measured, in the presence of layered domains, a shear modulus
that depends on the strain direction. Mean field theories applied to the calculation of the
deformation of magnetic domains in a constant field reproduce the experimental behaviour
quite well.

We have shown that not only does the separation between the two confining walls determine
the average separation and thickness of the domains, but also the presence of a small angle
between these walls can completely change the structure and generate a local motion inside
the cell in the presence of a sinusoidal perpendicular field.
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